
Knowledge-Based Distributed
Systems Management

Joseph Pasquale

Report No. UCB/CSD 86/295

June 1986
PROGRES Report No. 86.1

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Knowledge-Based Distributed Systems Management

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Distributed systems characterized by a high degree of inter-computer resource sharing generally perform
better if resources are managed utilizing as much knowledge of the current global state of the system as
possible. Decentralized resource management schemes have been preferred over centralized schemes for
reasons of reliability, autonomy, speed, and symmetry. Yet, distinct computers in a distributed system
often view the global system state quite differently. Consequently, decisions which produce system-wide
effects made by distinct computers can often conflict, invariably causing inefficiency in resource
management and therefore leading to downgraded performance. To address these and related problems, a
system is proposed which provides the following: * a mechanism for monitoring events of interest in a
distributed system; * a mechanism for distributing monitored data throughout the distributed system; * a
mechanism which uses heuristic-based specifications to interpret received monitored data from remote
sources so that appropriate actions can be taken when necessary. The novelty and power of the proposed
system lies in its application of expert system technology to deal with uncertain, incomplete, erroneous and
out-of-date observation data which is inevitable when one tries to efficiently monitor remote events in a
distributed system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Knowledge-Based Distributed Systems Management

Joseph Pasquale

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720
February 12, 1986

Abstract

Distributed systems characterized by a high degree of inter-computer resource sharing gen
erally perform better if resources are managed utilizing as much knowledge of the current
glo_baJ state of the system as possible. Decentralized resource management schemes have
been preferred over centralized schemes for reasons of reliability, autonomy, speed, and
symmetry. Yet, distinct computers in a distributed system often view the global system
state quite differently. Consequently, decisions which produce system-wide effects made by
distinct computers can often conflict, invariably causing inefficiency in resource manage
ment and therefore leading to downgraded performance.

To address these and related problems, a system is proposed which provides the following:

* a mechanism for monitoring events of interest in a distributed system;

* a mechanism for distributing monitored data throughout the distributed system;

* a mechanism which uses heuristic-based specifications to interpret received monitored
data from remote sources so that appropriate actions can be taken when necessary.

The novelty and power of the proposed system lies in its application of expert system tech
nology to deal with uncertain, incomplete, erroneous and out-of-date observation data
which is inevitable when one tries to efficiently monitor remote events in a distributed sys
tem.

This work was supported by an I.B.M. Fellowship and by the Defense Advanced Research Projec!B Agency
(DoD), monitored by the Naval Electronics Systems Command under contract No. N00039-S4-C-0089. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing
official policies, either expressed or implied, of I.B.M., the Defense Research Projects Agency or of the US Gover
ment.

1. Introduction: The General Problem

Remote resource-sharing in distributed systems has become increasingly popular. This

development is quite analogous to the situation experienced twenty years ago, when time

sharing was introduced. Time-sharing allowed expensive and scarce resources (eg. CPU,

primary memory, disks, tapes) to be shared in an orderly manner among many user

processes. Networks connecting computers (along with appropriate protocols) offer user

processes the capability of accessing resources which are remote, or located on different

computing nodes of the network.

There is a tremendous difference, though, in managing resource-sharing on the same com

puter and in managing resource-sharing on remote computers, particularly when one con

siders where the locus of control is in both situations. A computer's operating system is (for

the most part) the single locus of control or the single source of decision-making for that

computer's resources. Many distributed systems exist where decision-makers mutually

manage all the resources, the decision-makers being the nodes participating in the

resource-sharing. This decentralized scheme of control is hailed for such reasons as relia

bility (no single point of failure), autonomy (no one should have to take orders from anyone

else), speed (many can do the job faster than one), and symmetry (adding or deleting nodes

is easy and natural). Yet, just as in social systems, having many decision-makers work

concurrently on the same problem can lead to many conflicting decisions, especially when

each decision-maker sees the problem situation differently. Prescribing that decision

makers somehow agree to produce unified decisions (e.g., voting) is normally not possible

due to time and communication constraints. Consequently, in retrospect, it may seem

easier and more effective simply to elect a leader to make all the decisions, and give up

whatever benefits decentralized control can offer.

I am proposing to give decentralized control another chance by trying to focus on why

conflicting decisions occur and how to minimize their frequency. Assuming that conflicting

decisions are due to inconsistent (or non-existent!) views of the global state of the distri

buted system, the method of attack is to make relevant portions of the global state more

accessible to the decision-making nodes, and to make the nodes more intelligent.

2. Design of a Knowledge-Based Distributed Systems Manager

A new scheme is proposed for managing resources in distributed systems. This design is

general in that it can be applied to many distributed resource-sharing problems such as

load-balancing, message-routing, and distributed file placement. Of course, the efficiency of

the implementation of this design will depend on the particular application and the archi

tecture of the distributed system. Consequently, any implementation issues will focus on

the application under investigation.

3. The Structure of a Knowledge-Based Distributed Systems Manager

The Knowledge-based Distributed Systems Manager has three subsystems:

(1) Local State Monitors;

(2) State Distributors;

(3) Expert Managers.

Briefly, Local State Monitors provide a mechanism for monitoring events of interest in the

distributed system. Each computing node has a Local State Monitor which monitors state

variables inside that node. To communicate state information to other nodes, State Distri

butors are provided. Thus, each computing node has a State Distributor which sends local

state information to other nodes and also acquires state information about remote nodes.

Finally, the mechanism which interprets all this local and remote state information is the

Expert Manager. Expert Managers are small expert systems, and many can reside on a

single node. Each Expert Manager knows how to deal with one application very well. For

example, there may be an Expert Manager on every node for message routing; there may

be another Expert Manager for balancing the load on a set of computers.

A more detailed discussion of the above mechanisms follows.

4. Local State Monitors

At the lowest level of this system resides a mechanism for monitoring those events of

interest which take place inside a node. Monitors can be of the hardware or software

variety. I am assuming that software monitors will be there since they are relatively quick

and easy to implement. Typically, events are not directly observable by software monitors,

but the side effects they produce are directly observable. For example, an event of interest

might be the arrival of a new process which joins the CPU queue. This event is not

directly observable (if the CPU is being used to observe an event, it cannot possibly be

queueing a process, assuming software monitors are not allocated dedicated processors), but

if a side effect of queueing a process is to increment a counter, the counter's value can cer

tainly be observed to have changed.

Consequently, the technique suggested to monitor events is to sample variables which get

affected in some way (e.g., incremented) when the event of interest occurs. This technique

has the main advantage that the monitor can be either a distinct process or a distinct part

of the operating system kernel which simply reads special variables in the kernel. Regard

less of whether it is a process or a part of the kernel, the monitor is a self-contained piece of

software which can be easily inserted or deleted, and is simple to understand, modify, and

debug. Of course, its disadvantage is that, if we do not sample values at a sufficiently high

rate, the monitor may not detect changes which are occurring very rapidly. This turns out

to be a minor problem because events of interest to remote nodes will not change that

rapidly. The speed of response to those changes is limited by the communication time

between nodes, which is sufficiently large relative to the time between samples. For exam

ple, if it takes on the order of 1/10 second to send, receive, and process a message that con

tains sampled data, it makes no sense to sample at a rate of, say, one observation per mil

lisecond.

A State Variable is a variable kept in a computer's primary memory representing a piece of

state information about some object within that computer. Examples of state variables are:

the length of the CPU ready-process queue; the length of network input and output

queues; the amount of free vs. used primary memory; the amount of free space in a local

file system.

State variables are typically defined during the implementation of an operating system, but

can also easily be added at a later time. These state variables may correspond to hardware

sensors, software probes, or statistics which are functions of sensor and probe samples. The

main point is that they represent state information about some function in the machine

where they reside.

A Local State Monitor resides inside each computer node and monitors state variables

which will eventually be communicated to other nodes in the distributed system. The Local

State of a computer node is the collection of all state variables currently being monitored.

In particular, the Local State Monitor provides the following:

*

*

the sampling of designated state variables and an interface for obtaining state vari

able sample statistics;

a user interface which allows specification of what state variables are to be monitored

and what their system-wide interpretation is to be:

3

* a tracing capability which records a history of state variable samples in a file.

Thus, the Local State Monitor is a self~ontained unit which will provide its services to

other subsystems through a specific interface.

As an example, a computer node's Local State may consist of the following three state vari
ables:

(1) length of network input queue;

(2) length of network output queue;

(3) length of ready-process queue.

In general, these state variables would actually be time-smoothed versions of the instan
taneous corresponding queue lengths. Even this small Local State would be useful for sim

ple centralized or decentralized dynamic routing algorithms.

The Local State Monitor maintains a database of statistics about state variables currently

being monitored. These statistics can be used to infer properties about the past behavior of
each state variable. Such information may then be used for predictive purposes. For exam

ple, the following pieces of statistics might be kept about each state variable:

*
*
*
*
*

the current sampled value;

the geometric average value (e.g., x[n] + x[n-1]/2 + x[n-2]/4 + ...);
the change between the current and the previous samples (e.g., c(n] = x[n] - x[n-1]);

the geometric average change (e.g., c[n] + c[n-1]/2 + c[n-2]/4 + ...);
a time-stamp of when the sample was updated.

This set of statistics provides information about the state variable's instantaneous value, its

typical value and variability as a function of time, and how stale the information is. One

can efficiently implement a generator of these statistics using 2 shift and 3 add operations,
along with the required memory reads and writes. Thus, even if there were 100 state vari

ables being monitored every 1110 second and the time to perform a basic instruction were 1
microsecond, the percentage of CPU time used to perform this monitoring would be on the

order of a tenth of a percent.

The Local State Monitor also manages the database of state-variable samples received from

remote nodes through the State Distributor, to be described in the next section. Conse
quently, information about remote state variables can also be accessed from the Local State

Monitor through the same interface used to access local state variable information. In this
case, an identifier of the remote node would be passed along with the other interface
parameters.

Descriptions of other systems which have used similar ideas can be found in [Borysowich82]

[Lewis80] [Tarnay80] [Terplan81] [Terplan83]. A system which does a similar monitoring

function at the user level is Metric [McDaniel75]. In fact, the way Metric allows the type

definition of events could be adopted for the definition of state variables. As in Metric, a

particular type of state variable would be interpreted the same way throughout the distri
buted system once conventions are developed.

5. State Distributors

Once state variables of interest are sampled, there must be a mechanism by which they can
be communicated to remote nodes. This mechanism must be highly efficient since the data

being transmitted becomes less useful as time passes on. Although this depends very much

on the particular structure of tpe distributed system and on the available hardware, the
design must be able to take advantage of any implementation-specific efficiencies that
might be achieved.

A Relevant Local State is the collection of state variables in a node which are of interest to

remote nodes. A Relevant Local State Snapshot is the collection of the most current sam

pled values of state variables in the Relevant Local State. A State Distributor is the

mechanism which distributes Relevant Local State Snapshots to other nodes in the distri

buted system. There is a State Distributor in all nodes (participating in resource sharing),

and State Distributors communicate two types of information between each other:

(1) the Relevant Local State Snapshots of the node they reside in;

(2) specifications of what state variables in remote nodes are of interest (i.e., what state

variables should be included in a remote node's Relevant Local State).

When a State Distributor receives a Relevant Local State Snapshot from a remote node, it

communicates this information to the Local State Monitor, which provides the interface to

other subsystems for accessing the data. The collection of all Relevant Local State

Snapshots which a node collects from other nodes (along with its own Local State) is called

the node's Relevant Global State. Thus, when a request is made to the Local State Monitor

for the value of a particular state variable, one may also specify the node of interest. For

example, one may request the value of the local CPU queue length, or the value of a

remote node's CPU queue length if the node is specified.

A State Distributor makes use of the interface provided by the Local State Monitor residing

on the same computing node. This is how it obtains those values of the Local State which

become the Relevant Local State Snapshot to be distributed.

Consequently, it is the function of all the State Distributors in the distributed system

cooperatively to produce a kind of "raw" global system state for each node, namely the

Relevant Global State. Note that this raw global system state is very approximate; in fact,

each node could easily have a different version of this state. Thus, this raw global system

state must go through a level of interpretation or filtering so that a better approximation of

the true global state is available. This will be the subject of the next section.

As mentioned above, the implementation of State Distributors is dependent on the architec

ture of the distributed system and on the types of distributed computations which will

make use of Relevant Global States. For example, a routing algorithm fOr a distributed

system which consists of an inter-network (i.e., a network of networks) of computing nodes

may require all nodes in the inter-network to know state information about each other.

Other algorithms require knowledge of state information only about nodes in the same net

work, with gateways taking care of inter-network traffic, and still other algorithms require

only that neighboring nodes exchange state information. Consequently, a State Distributor

for such applications must potentially be able to distribute Relevant Local State Snapshots

to a large number of nodes, many of which can be very distant from each other.

Another application might be load balancing, where the combined load of the computing

nodes on a single local-area network is to be balanced across the nodes. In this case, the

State Distributors may take advantage of the broadcast capability of the local-area network

to transmit load information. Further optimizations are possible if smart network inter

faces which have DMA capability are used; broadcasting incurs very little overhead in this

case. In yet another scenario, the State Distributor may make use of a distributed file sys

tem if broadcasting is n~t possible or undesirable.

The idea of periodically sending performance data between nodes is well-established in the

literature, especially for network monitoring systems [Abrams78] [Alton81a] [Alton81b]

[Barchanski81] [Bartz83] [Bernstein83a] [Bernstein83b] [Buck78] [Caneshi81] [Grange77]

[Herman82] [McCrea82] [Murphy81] [Murphy82] [Terplan82]. Yet, there are many

unresolved issues such as the frequency of sending, whether ~roadcasting or multicasting

should be used, and host interference and network interferenc~ ·due to the distribution pro

cess.

6. Expert Managers

Local State Monitors and State Distributors implement the mechanisms for exchanging

observations about events occurring in all the nodes of a distributed system. The amount

of information present in the raw observation data which a node receives can be

overwhelming, to the point of being almost useless. For example, if there are 100 nodes

and 10 relevant state variables are sampled at each node, and each state variable has 100

different values (not a very complex system), we would face a state space of size 100,000!

Specifying what to do for each case would be an exhausting process, and the prospect of

adding new relevant state variables would be disastrous.

Consequently, what is needed is a mechanism which will reduce this unwieldy state space

to a small set of meaningful states. This mechanism must also be able to deal with the fact

that much of the observed data is imperfect; not only can the data be noisy, but it will have

aged since the time it was generated (by sampling a memory location, a process that intro

duces further uncertainty) and then communicated. This uncertainty must at least be

expressible so that decisions made using the imperfect data take uncertainty into account.

An Expert Manager is a mechanism which addresses these problems through the use of

techniques borrowed from expert system technology. In fact, an Expert Manager is really a

small expert system. Its function is to analyze the current Relevant Global State (all the

most recent data observed from all the nodes in the distributed system) and then make rea

sonable inferences about what is happening in the distributed system. Upon concluding

that certain actions need to be taken, it can directly activate processes specifically designed

to carry out these actions. Before continuing, a discussion about expert systems is in order.

6.1. Expert Systems

A key characteristic of an expert system is its use of heuristics to search for solutions to

problems. These heuristics are basically "rules-of-thumb" which experts in the problem

area go by when they solve problems. Moreover, the specification language of an expert

system is typically a set of heuristics in the form of IF-THEN rules. These expert system

languages are declarative (i.e., they specify what to do, as opposed to procedural languages,

which specify how to do something). Most common programming languages are procedural.

It is the role of Expert Managers to be policy makers. Expert Managers indicate what

nodes should be doing cooperatively to solve a distributed problem, and not how the under

lying mechanisms carry the policies out. Consequently, it is natural that a declarative

rule-based language be used to program Expert Managers.

Expert systems are composed of a Knowledge Base, in the form of heuristics or a set of

rules, and an Inference Engine, a mechanism which makes inferences through the applica

tion of the knowledge-base rules. An expert system operates by accepting inputs, and then

applies appropriate rules to make conclusions about the inputs. Rules are then applied to

the conclusions to make further conclusions, this process continuing until the problem is

solved. Expert systems have other interesting and useful features, which make them

ideally suited to implement Expert Managers. These other features found in various expert

systems are:

*
*
*

Forward-Chaining Control

Action Activation

Goal-Oriented Operation

* Ability to Deal with Uncertainty

6.2. An Example

To explain how an Expert Manager would work, consider the following example of a load

balancing Expert Manager. First, a brief description of distributed system state monitoring

and distribution is given, followed by how Expert Managers make use of the system state.

6.3. State Monitoring and Distribution

A local-area network has many computing nodes and it is desired that the load be roughly
balanced across all nodes, the idea being that it would be poor management to have one
computing node overworked if there were other nodes which were completely idle. Assume
that a reasonable metric for the load of a computer is the length of the CPU ready-process
queue. Consequently, we define a state variable, called LA for Load Average, which is a
statistic constructed by time-averaging samples of the instantaneous CPU ready-process
queue length. This state variable is monitored by the Local State Monitor inside each com
puter node, and its values are made available to other nodes through the State Distributor.

6.4. Rules and State Interpretation

An Expert Manager dedicated to load balancing could now interpret the LA state variable
in the following way:

(1) IF LA(X) > 8 THEN State(X) is OVERLOADED

(2) IF 2 < LA(X) < 8 THEN State(X) is BUSY

(3) IF LA(X) < 2 THEN State(X) is IDLE

These are typical rules which might be programmed into an Expert Manager. Rule 1
translates to: if the load average of node X is greater than 8, consider the state of node X
to be OVERLOADED. Substituted for X are all nodes which communicate their Relevant
States to the node on which the Expert Manager resides.

Here, nodes are considered to be in one of three states. Thus, a simple function that can be
carried out by the Expert Manager consists of taking a large state space defined by all the
local and remote state variables received, and conglomerate them into a small set of mean
ingful states (in this case, three) through simple rules.

IF-THEN rules are the most common way of expressing knowledge in expert systems. One
of the first expert systems to express rules in this fashion was the MYCIN system
[Shortliffe76]. Other notable examples are PROSPECTOR [Duda78], PUFF [Freiherr80],
and ROSIE [Fain82].

6.5. Inferring Causal Relationships

The Expert Manager, given the above three rules, can then construct the following rules on
its own:

(4) IF LA(XJ is increasing AND State(X) is IDLE THEN State(X) will become BUSY

(5) IF LA(X) is increasing AND State(X) is BUSY THEN State(X) will become
OVERLOADED

(6) IF LA(X) is decreasing AND State(X) is OVERLOADED THEN State(X) will
become BUSY

(7) IF LA(X) is decreasing AND State(X) is BUSY THEN State(X) will become IDLE

This was accomplished by a meta-rule of the Expert Manager, which notices that the range
of LA is divided into intervals, and each interval is a state. It then constructs rules 4
through 7.

The idea of a meta-rule, a rule about other rules, is evident in many expert systems such as
MYCIN [Shortliffe76], DENDRAL and META-DENDRAL [Buchanan78] [Lindsay80], and
HEARSAY-III [Balzar80], and much of their power stems from the use of meta-rules.
Rules 4 through 7 are actually a very simple form of the application of meta-rules. Here, a
meta-rule exists specifically for the case when states are assigned to intervals of some state
variable.

7

6.6. Forward Chaining and Actions

Rules can also express that actions should take place. For example:

(8) IF State(ME) is OVERWADED AND State(X) is IDLE THEN ACTIVATE

(OFFWAD (X))

This rule simply states that if the state of the local node is OVERLOADED and the state of
some other node is IDLE, then a process called OFFLOAD should be activated. This pro

cess is not really part of the Expert Manager. It is a process independently implemented,

whose function is to offload processes located on the same node on which it resides to a node
provided as a parameter. Thus, the Expert Manager makes the policy decision to offload,

and an independent process implements the mechanism.

As the Expert Manager executes, it continuously tries to match the antecedents of all its

rules. If the local LA happened to be 10, and the LA on node A was 1, the Expert Manager
would conclude that State(ME) is OVERLOADED and State(A) is IDLE. This would in

turn fire rule 8, which causes the offloading process to take corrective action. The control
mechanism to accomplish this is commonly called Foro;ard Chaining.

6.7. Backward Chaining, and Goals

An Expert Manager may also work in a goal-oriented mode. Consider the following addi
tional rules:

(9) IF LA(ME) - LA(X) > 3 THEN SystemState is UNBALANCED

(10) IF LA(ME) - LA(X) < 3 THEN SystemState is BALANCED

One should immediately notice that inferences about causality can be made here. The fol

lowing additional rules are generated:

(11) IF (LA(ME) - LA(X)) is increasing AND SystemState is BALANCED THEN Sys

temState will become UNBALANCED

(12) IF (LA(ME) - LA(X)) is decreasing AND SystemState is UNBALANCED THEN

SystemState wiU become BALANCED

The Expert Manager may now be placed in a mode to achieve a goal by installing the fol
lowing directive:

(13) Make SystemState BALANCED

If SystemState's value is BALANCED, the Expert Manager does nothing. If SystemState's

value is or becomes UNBALANCED, the Expert Manager tries to determine how to make
it BALANCED. To do this, the Expert Manager uses backward chaining control to accom

plish the above goal. This is done by looking at the THEN parts of each rule for "System

State will become BALANCED". Observe that rule 12 applies. The Expert Manager tries to
make the antecedent of rule 12 true, and this is how a goal is accomplished. Since System

State is currently UNBALANCED, one part of the antecedent is true. If LA(ME) - LA(X)
is in fact decreasing for some node X, it will believe that eventually, the SystemState will

become BALANCED, and the goal is achieved. If LA(ME) - LA(X) is not decreasing for any

node X, it will inquire (a system operator or administrator):

"How can I make 'LA(ME) - LA(X) is decreasing' TRUE?"

A new rule may then be added:

(14) IF ACTIVATE (OFFLOAD (X)) THEN LA(ME) - LA(X) is decreasing

Using 14, the Expert System activates the OFFLOAD process and is then satisfied that the

goal will eventually be accomplished.

This backward chaining type of control is exactly how the MYCIN expert system works
[Shortliffe76].

6.8. Dealing with Uncertainty

Perhaps the greatest benefit that can be derived by using expert system technology to solve

distributed systems management problems is to incorporate techniques of dealing with
uncertainty. Briefly, the idea is that every rule may be given a certainty factor. This fac

tor indicates how sure we are that this rule truly works. Certainty factors usually range

from -1 to 1, where -1 means we are sure the rule is false, 1 means we are sure it is true,
and 0 means total uncertainty. Thus, we have a way of expressing how certain the

knowledge is in the knowledge-base.

Not only should we be able to express that rules are uncertain, we need especially to
express that values of monitored state variables from remote nodes are uncertain. This

uncertainty can vary in time: for example, an uncertainty function for a state variable can

depend on its age and variability. As the data gets older or staler, we become less confident
that it represents the true value at the remote node. It is also natural to include variabil

ity in the uncertainty factor; the more variable the data is, the less certain we are it is
valid as time passes.

7. Summary

A proposal for a Knowledge-Based Distributed Systems Manager has been described. It is

composed of three subsystems: Local State Monitors, State Distributors, and Expert

Managers, which respectively monitor, distribute, and interpret the global state of the dis
tributed system. The novelty and power of this system lies in the way Expert Managers

make use of the information provided by Local State Monitors and State Distributors.

Techniques from expert systems are incorporated in Expert Managers, namely state

interpretation, forward chaining, goal-oriented operation, and dealing with uncertainty

using certainty factors, which allow intelligent interpretation of raw global state informa
tion. These techniques enable us naturally to express the types of functions needed for

arriving at policy decisions when managing resources in a distributed system where the

state of remote resources is not known with complete certainty.

8. Acknowledgements

I wish to express deep gratitude to my research advisor, Professor Domenico Ferrari, who

continually gave me guidance and advice. This research exists only because of his constant
encouragement. I am also indepted to Dr. Luis Felipe Cabrera, who during the early stages

of this research inspired many key ideas.

'I

9. Bibliography

[Abrams78]

[Alton81a]

[Alton81b]

Abrams, M.D., and Hayden, H.P., "Application of a Network Monitor to the

Selection of a Time Shared Computing System," 14th meeting of the Computer

Performance Evaluation Users Group (Boston, MA), pp. 15-25, Nat. Bur. Stan

dards, Washington D.C., USA, Oct. 1978.

Alton, B., Baker, S., Horn, C., Kenyon, S., Patel, A., Purser, M., and Sheehan, J.,

''Networking Experience at Trinity College, Dublin," Networks from the User's

Point of View. Proceedings of the IFIP TC-6 Working Conference COMNET '81

(Budapest, Hungary), pp. 205-15, North-Holland, Amsterdam, Netherlands, May

1981.

Alton, B., Patel, A., Purser, M., and Sheehan, J., ''The Performance of a Packet

Switched Network - A Study of EURONET," Performance of Data Communica

tion Systems and their Applications. Proceedings of the International Conference

(IFIP, IEEE, Paris, France), pp. 379-89, North-Holland, Amsterdam, Nether

lands, Sept. 1981.

[Armstrong78]
Armstrong, T.R., "Minicomputer Network Monitoring Lessens Fear of 'Depen

dency'," Data Management (USA), pp. 33-5, Dec. 1978.

[Barchanski80]
Barchanski, J .A., and Muehleisen, T., "Quality of Service Monitoring of the

Open Systems Architecture Transport Layer," Tanulmanyok Magy. Tud. Akad.

Szamitastech. and Autom. Kut. lntez. (Hungary), pp. 33-59, 1980.

[Barchanski81]

[Barnes82]

[Bartz83]

Barchanski, J.A., and Muehleisen, T., "Basic Concepts of the Quality of Tran

sport Service Monitoring in an Inter-University Computer Network," Perfor

mance of Data Communication Systems and their Applications. Proceedings of the

International Conference (Paris, France), pp. 241-50, North-Holland, Amsterdam,

Netherlands, Sept. 1981.

Barnes, A.C., and Graves, J., "Operational and Maintenance Experience of PSS,"

Pathways to the Information Society. Proceedings of the 6th International Confer

ence on Computer Communication (London, England), pp. 237-40, North-Holland,

Amsterdam, Netherlands, Sept. 1982.

Bartz, W.S., and Patterson, R.W., "Total Network Data System: National Net

work Management," Bell Syst. Tech. J. (USA), pp. 2261-80, Bell Labs., Murray

Hill, NJ, Sept. 1983.

[Bernstein83b]
Bernstein, M., Sunshine, C., and Kaufman, D., "A Network Control Center for

Broadband Local Area Networks," Local Networks. Distributed Office and Factory

Systems. Proceedings of Localnet '83, pp. 425-34, Online Publications, Pinner,

England, June 1983.

·'V \

[Bernstein83a]
Bernstein, S.L., and Herman, J.G., "NU: A Network Monitoring, Control, and

Management System," IEEE International Conference on Communications:

Integrating Communication for World Progress (ICC '83) (Boston, MA), pp. 578-

83, IEEE, New York, NY, June 1983.

[Borysowich82]
Borysowich, L.H., and Houghton, B.G., "Network Monitor," IBM Tech. Disclosure

Bull. (USA), pp. 543-7, July 1982.

[Buchanan 7 8]

[Buck78]

Buchanan, B.G., and Feigenbaum, E.A., "DENDRAL and Meta-DENDRAL:

Their applications dimension," Artificial Intelligence, pp. 5-24, 1978 . .
Buck, D.L., and Hrynyk, D.M., "Software Architecture for a Computer Network

Monitoring System," Performance of Computer Installations. Evaluation and

Management (Gardone Riviera, Italy), pp. 269-87, North-Holland, Amsterdam,

Netherlands, June 1978.

[Caneschi80]
Caneschi, F., Ceccarelli, A., Ferrini, R., Lenzini, L., and Menchi, C., "RPCNET

Measurement System: First Experiences," Atti del Congresso Annuale AICA '80

(Annual Conference AICA '80), pp. 29-31, Tecnoprint, Bologna, Italy, Oct. 1980.

[Caneschi81]

[Chu83]

[Duda78]

[Fain82]

Caneschi, F., Lenzini, L., and Manchi, C., ''The Behaviour of a Packet Switching

Network Running under a Time Sharing Operating System," Networks from the

User's Point of View. Proceedings of the IFIP TC-6 Working Conference COM

NET '81 (Budapest, Hungary), pp. 397-410, North-Holland, Amsterdam, Nether

lands, May 1981.

Chu, Van, "Monitoring Network Performance," Computerworld (USA), pp. 91-4,

May 18, 1983.

Duda, R.O., Hart, P.E., Barrett, P., Gaschnig, J., Konolige, K., Reboh, R., and

Slocum, J., "Development of the PROSPECTOR Consultation System for Mineral

Exploration," Final Rept. SRI Projects 5821 and 6415, Artificial Intelligence

Center, SRI International, Menlo Park, CA, 1978.

Fain, J., Hayes-Roth, F., Sowizral, H., and Waterman, D., "Programming in

ROSIE: An introduction by means of examples," Tech. Rept. N-1646-ARPA,

Rand Corporation, Santa Monica, CA, 1982.

[Freiherr80]

[Gallo81]

Freiherr, G., "The Seeds of Artificial Intelligence," NIH no. 80-2071, SUMEX

AIM, Washingtion, D.C., 1980.

Gallo, A., and Wilder, R.P., "Performance Measurement of Data Communications

Systems with Emphasis on Open System Interconnections (OS!)," 8th Annual

Symposium on Computer Architecture (Minneapolis, MN, USA), pp. 149-61,

IEEE, New York, USA, May 1981.

[Goodier79]
Goodier, M., "Central Management for Distributed Intelligence," Data Processing

(GBJ, pp. 38-9, March 1979.

[Grange77]
Grange, J.L., "Operating the Cigale Packet Switching Network: Concepts, Tech

niques and Results," Eurocon '77 Proceedings on Communications (IEEE), pp.

44-9, IEEE, New York, NY, May 1977.

[Herman82]
Herman, J.G., and Bernstein, S.L., "Monitoring, Control, and Management of the

Defense Data Network," Conference Record of EASCON 82. 15th Annual Elec

tronics and Aerospace Systems Conference (Washington DC), pp. 95-102, IEEE,

New York, NY, Sept. 1982.

[Hinden83]
Hinden, R.A., "A Host Monitoring Protocol," RFC-869, Bolt Beranek and New

man Inc., Cambridge, MA, Dec. 1983.

[Johnston83]
Johnston, K., "Network Planning," Syst. Int. (GB), pp. 41-2, Oct. 1983.

[J uttelstad83]

[Lewis80]

Juttelstad, D.P., and Paesano, S., "A Hardware Test-bed for the Evaluation of

Distributed Processing Concepts," Proceedings of the 16th Hawaii International

Conference on System Sciences, pp. 367-76, Hawaii Int. Conference Syst. Sci.,

Honolulu, HI, Jan. 1983.

Lewis, W.E., "Mechanism for Synchronizing Hardware and Software System Per

formance Monitors," IBM Tech. Disclosure Bull. (USA), pp. 54-5, June 1980.

[Lindsay80]
Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., and Lederberg, J., Applica

tions of Artificial Intelligence for Organic Chemistry: The DENDRAL Project,

McGraw-Hill, New York, NY, 1980.

[Manning81]
Manning, E.G., Wong, J.W., Powell, P.A.D., Radia, S.R., and Tokuda, H.,

"Shoshin -A Testbed for Distributed Software," IEEE 1981 International Confer

ence on Communications, pp. 25.5/1-5, IEEE, New York, USA, June 1981.

[McCrea82]
McCrea, R.C., and Akers, F.A., "Data-Communication Networking: Components,

Structure and Performance Analysis," Computer Performance (GB), pp. 126-44,

Sept. 1982.

[McDaniel75]
G. McDaniel, "METRIC: a kernel instrumentation system for distributed

environments," Proc. of the Sixth Symp. on Operating Sys. Principles, pp. 93-99,
Purdue University, November 1975.

[Metcalfe76]
R. M. Metcalfe, and D. R. Boggs, ''Ethernet: distributed packet switching for
local computer networks," Comm. of the ACM, pp. 395-404, July 1976.

[Morency81]
Morency, J.P., "Managing Computer Networks," Telecommunications (USA), pp.
33-4, May 1981.

[Morgan83]
Morgan, A.H., "Overlord: The Changing Role in Switching," Telecommunications
(USA), pp. 113-16, Oct. 1983.

[MurphyS!]
Murphy, J.L., "Centralized Control and Monitoring of a Distributed Local Net
work," IEEE 6th Conference on Local Computer Networks, pp. 93-9, IEEE, New
York, NY, USA, Oct. 1981.

[Murphy82]

[Postel82]

[Saito81]

[Seid83]

[Shoch79]

Murphy, J.L., and Midkiff, E.L., "Extension of Network Monitoring to a System
Wide Resource Management Function," Proceedings of Computer Networks
Compcon 82, 25th IEEE Computer Society International Conference (Washington
D.C.), pp. 720-4, IEEE, New York, NY, Sept. 1982.

Postel, J., Sunshine, C., and Cohen, D., "Recent Developments in the DARPA
Internet Program," Pathways to the Information Society, Proceedings of the 6th
International Conf on Computer Communications, pp. 975-80, London, Sept.
1982.

Saito, T., Kato, T., Yano, H., and !nose, H., "Protocol Product Validity by Means
of Link Monitoring (Computer Networks)," IEEE 1981 National Telecommunica
tions Conference. Innovative Telecommunications - Key to the Future (New Orle
ans, LA), pp. F6.111-4, IEEE, New York, NY, Nov. 1981.

Seid, H.A., ''The Ins and Outs of Managing a Packet Network," Data Commun.
(USA), pp. 149-61, Oct. 1983.

Shoch, J.F., and Hupp, J.A., "Measured Performance of an Ethernet Local Net
work," Local Area Communications Network Symposium, May 1979.

[Shortliffe7 6]

[Tan82]

Shortliffe, E.H., Computer-based Medical Consultation: MYCIN, American
Elsevier, New York, NY, 1976.

Tan, W., Meng, P., and Hadad, A., "Adaptive Protocol for Worsening Communi
cation Line Conditions," MILCOM '82. 1982 IEEE Military Communications

Conference. Progress in Spread Spectrum Communications (Boston, MA), pp.

16.311-5, IEEE, New York, NY, Oct. 1982.

[Tarnay80]
Tamay, K., ''Measurement of Computer Networks," Hungarian Acad. Sci.,

Budapest, pp. 10, 1980. ..

[Terplan79]
Terplan, K., ''Performance Measurement of Computer Networks (in GERMAN),"

Angew. In{. (GERMANY), pp. 329-33, Aug. 1979.

[Terplan81)
Terplan, K., ''Network Monitor Survey," Comput. Performance (GB), pp. 158-73,

Dec. 1981.

[Terplan82]
Terplan, K., "Organizing a Network Administration Center," EDP Performance

Rev. (USA), pp. 1-8, Aug. 1982.

[Terplan83]
Terplan, K., "Communications Systems Performance Management," Comput.

Performance (GB), pp. 29-34, Mar. 1983.

I .J

